Al for Science, Energy and Security

Rick Stevens, Jonathan Carter, Doug Kothe Rob Neely, Jason Pruet, John Feddema

Argonne, Berkeley, Oak Ridge, Livermore, Los Alamos and Sandia National Laboratories

DOE's Unique Position for AI Leadership

- Operates the most capable computing systems and the world's largest collection of advanced experimental facilities
- Responsible for US nuclear security through deep partnerships across government
- Largest producer of classified and unclassified scientific data in the world
- Strongest foundation combining physical, biological, environmental, energy, mathematical and computing sciences
- Largest scientific workforce in the world
- Strong ties with private sector technology and energy organizations and stakeholders

World's best experimental facilities and supercomputers

DOE Has Been Gathering Wide Community Input (>1300 researchers)

2019

What changed in three years?

- Language Models (e.g. ChatGPT) released
- Artificial image generation took off
- Al folded a billion proteins
- Al hints at advancing mathematics
- Al automation of computer programming
- Explosion of new Al hardware
- Al accelerates HPC simulations
- Exascale machines start to arrive

2022

2020 DOE Office of Science ASCR Advisory Committee report recommending major DOE AI4S program

Report posted here:

https://www.anl.gov/ai-for-science-report

From the workshops it was clear that AI represents a powerful new foundation for progress in science and technology

Al based surrogates for HPC

Climate Ensembles
Effective Zettascale on Exa

Al for software engineering and programming

Code Translation, Optimization Quantum Compilation, QAlgs

Al for advanced properties inference and inverse design

Energy Storage Proteins, Polymers

Al and robotics for autonomous discovery

Materials, Chemistry, Biology Light-Sources, Neutrons

Al for prediction and control of complex engineered systems

Accelerators, Buildings, Cities, Power Grid, Networks

Foundation Al for scientific knowledge

Responsible AI R&D is needed to Execute Our Science, Energy and Security Missions

General Society AI Risks

- Disinformation and Deepfakes
- Surveillance and Privacy Violations
- Social and Behavioral Engineering
- Bias and Discrimination
- Market Manipulation

Global Security AI Risks

- Autonomous and Swarm Weapons
- Biosecurity and Novel Agents
- Nuclear Proliferation
- New Approaches to Chemical Weapons
- Accelerated Cyberwarfare

Realizing the potential of AI for science and security will take a national effort in the tradition of nuclear and high energy physics

- Integrated AI R+D plan supporting data use across science and engineering
- Al computing infrastructure building on DOE's world leading Exascale GPU systems

Partner with industry to create new and more energy efficient computing systems

- Unite DOE's user facilities as national platforms that can be AI driven for powerful advances
- A new era of strategic partnerships with universities and international allies

Integrated science R&D on alignment, ethics and responsibility

Transformational hub-scale-centers on key AI4SES themes strong ties to program grand challenges

Crosscutting AI technologies

Dedicated access to computing and experimental facilities

This is now a major international competition. Those using AI will gain asymmetric advantages and displace those who do not.